

Что такое испаритель?

Испаритель — это теплообменник, используемый в качестве испарителя в системах охлаждения. Системы охлаждения состоят из четырех основных компонентов для завершения цикла охлаждения. Этими компонентами являются компрессор, конденсатор, расширительный клапан и испаритель. Компрессор увеличивает давление и температуру газа посредством сжатия и отправляет его в конденсатор. Горячий и высоконапорный газ, переданный в конденсатор, затем конденсируется и частично сбрасывает давление перед отправкой в расширительный клапан. Давление и температура газа, прошедшего через расширительный клапан, снижаются.

Газожидкостная смесь, выходящая из расширительного клапана, направляется в испаритель, где хладагент полностью преобразуется в газовую фазу и возвращается в

компрессор. Так завершается газовый цикл..

Испарители могут быть спроектированы в различных типах в зависимости от типа используемого газа и рабочего давления. Обычно они производятся с использованием медных трубок с внутренними канавками. В зависимости от типа жидкости испарители могут также изготавливаться с трубками из нержавеющей стали или медно-никелевого сплава (CuNiFe) и с оцинкованной или нержавеющей стальной оболочкой.

Почему следует использовать испарители?

Для эффективной и надежной работы промышленных и коммерческих систем охлаждения необходимы правильные компоненты теплопередачи. Испарители являются одними из ключевых компонентов системы охлаждения. Успех системы охлаждения напрямую зависит от эффективной работы испарителя.

Испарители являются сердцем системы охлаждения, и при правильном выборе они напрямую повышают общую производительность и энергоэффективность системы. Испарители серии TANPERA TES — это передовые технологические продукты, которые отвечают всем этим потребностям.

Потому что;

Высокая эффективность теплопередачи

Испарители напрямую влияют на энергоэффективность системы охлаждения. Высокопроизводительный испаритель обеспечивает большее охлаждение при меньшем потреблении энергии, что значительно снижает эксплуатационные расходы.

■ Контроль температуры Precisex:

Многие промышленные процессы требуют точного контроля температуры. Испарители поддерживают желаемые уровни температуры, обеспечивая превращение хладагента в газ, тем самым обеспечивая стабильность производственных процессов.

Различные области применения

Испарители имеют широкий спектр применения в системах охлаждения. Благодаря различным вариантам конструкции и материалов они обеспечивают эффективную и надежную работу во всех типах охлаждающих приложений, от низкотемпературных требований до точного контроля температуры.

Прочность и долговечность

Испарители серии TANPERA TES разработаны для работы в тяжелых условиях. Изготовленные из высококачественных материалов и превосходного проектирования, они обеспечивают долгосрочное использование, повышая надежность системы.

Простота обслуживания и гибкость

Их конструкция делает испарители простыми в установке и обслуживании. Кроме того, с различными вариантами мощности и материалов они предоставляют решения, адаптированные под любые потребности.

Преимущества;

Высокая энергоэффективность

Обеспечивает максимальную производительность при низком энергопотреблении, снижая эксплуатационные расходы.

Прочная и долговечная конструкция

Изготовлены с расчетом на длительную эксплуатацию в суровых промышленных условиях.

Широкий спектр применения

Испарители являются неотъемлемой частью систем охлаждения в системах HVAC и промышленных приложениях. Эти системы, которые можно адаптировать к различным потребностям, обеспечивают энергоэффективность и высокую зводительность в процессах охлаждения..

• Экологичные технологии

Поддерживает устойчивое развитие за счет экологически чистых производственных процессов и решений по охлаждению.

Простота установки и обслуживания

Испарители упрощают процессы обслуживания и установки благодаря своей практичной конструкции. Эти системы, выпускаемые с различными вариантами мощности и материалов, предлагают индивидуальные решения для всех потребностей в охлаждении.

• Гибкие варианты емкости

Предлагает решения для различных нужд с моделями различной производительности...

Улучшенная эффективность теплопередачи

Обеспечивает высокую эффективность процессов охлаждения за счет эффективной теплопередачи.

Широкий ассортимент продукции

Предоставляет решения для каждой отрасли с широким спектром моделей и функций.

• Использование передовых технологий

Изготовлено с использованием новейших инженерных стандартов и самых современных технологий.

Высокая надежность

Предлагает надежную и качественную продукцию, основанную на обширном опыте Tanpera.

Области применения

Испарители, которые обеспечивают эффективные и надежные решения для промышленных и коммерческих холодильных систем, широко используются в различных секторах. Благодаря широкому диапазону возможностей и вариантов конструкции они предлагают гибкие решения, подходящие для всех типов охлаждающих приложений. Эти системы направлены на снижение эксплуатационных расходов за счет экономии энергии, долговечности и высокой производительности.

Системы кондиционирования воздуха и тепловые насосы

Экономит энергию, поддерживая нужную температуру. В тепловых насосах обеспечивает эффективность с рекуперацией тепла.

Холодильное хранение

Минимизирует колебания температуры и сохраняет продукты свежими. Снижает эксплуатационные расходы за счет энергоэффективности.

Пищевая промышленность

Сохраняет свежесть и пищевую ценность продуктов. Снижает эксплуатационные расходы за счет экономии энергии.

Сектор литья чугуна и стали

Обеспечивает непрерывность производства металла, предотвращая перегрев. Поддерживает производственные процессы с высокой теплообменной способностью.

Основные характеристики и факторы проектирования групп продуктов

Испарители серии Тапрега ТЕЅ разработаны инженерами Тапрега для совместимости с хладагентами НСFС, НFС и НFО, хотя они стандартно разработаны для газа R407С. Испарители сухого расширения серии ТЕЅ обеспечивают высокую производительность и широкие эксплуатационные возможности для групп чиллеров, используемых в системах отопления и охлаждения в промышленности и секторах НVAC. Испарители серии ТЕЅ производятся в четырех различных независимых газовых контурах с использованием самых высоких технологий, высоких инженерных и проектных возможностей в Тапрега.

Информация о конструкции и материалах

Все механические расчеты испарителей серии Тапрега TES выполнены инженерами Тапрега, и они изготовлены с использованием материалов, соответствующих стандартам EN. Испарители серии TES производятся для обеспечения высокой производительности на основе требований заказчика с различными вариантами материалов и условиями проектирования.

Стандартные характеристики материалов серии TES

Теплопередающие трубки: Медные, с внутренней резьбой из меди **Торцевые пластины, корпус, крышка и соединения:** Углеродистая сталь

Перегородка: Полиэтилен

Технические характеристики специальных материалов для испарителей серии TES Теплопередающие трубки: Медь-никель AlSl316L, AlSl304L, Углеродистая сталь Торцевые пластины, корпус, крышка и соединения: AlSl316L, AlSl304L Перегородка: AlSl316L, AlSl304L, Углеродистая сталь

Качаство и тестирование

Тепловые и механические расчеты испарителей Тапрега серии TES выполняются инженерами Тапрега в соответствии с соответствующими стандартами. Сторона хладагента стандартных испарителей серии TES тестируется сухим азотом под давлением 33 бар, а сторона воды тестируется под давлением 11 бар. В группах продуктов с 1, 2, 3 и 4 контурами применяются различные давления и методы для предотвращения утечек между контурами.

Факторы, которые следует учитывать Правильный выбор испарителя

• Фактор загрязнения

Одним из важных правил, которые следует учитывать при выборе испарителя, является фактор загрязнения. Во время работы ваш испаритель будет накапливать слой пленки на поверхностях труб в зависимости от качества используемой воды. Этот слой пленки, который образуется со временем, приведет к потере мощности и производительности испарителя. Чтобы предотвратить эти потери, фактор загрязнения следует выбирать на основе источника воды при выборе испарителя. Некоторые факторы загрязнения, необходимые для определенных условий, следующие:

Закрытый контур воды: $0.043 \text{ m}^2\text{K/W}$ Открытый контур воды: $0.086 \text{ m}^2\text{K/W}$ Раствор гликоля 40%: $0.086 \text{ m}^2\text{K/W}$ Раствор гликоля 40%: $0.0172 \text{ m}^2\text{K/W}$

• Соотношение антифриза

Одним из правил, которое следует учитывать при выборе испарителя, является коэффициент загрязнения.

Точка замерзания	Соотношение этиленгликоля %	Пропиленгликоль Соотношение %
-5	% 12	% 16
-10	% 22	% 26
-15	% 30	% 34
-20	% 36	% 40
-25	% 40	% 44
-30	% 44	% 48
-35	% 48	% 52
-40	% 52	% 56

Рекомендации по установке и использованию

Инженеры Tanpera рекомендуют следовать приведенным ниже рекомендациям для оптимального и долгосрочного использования испарителей серии TES:

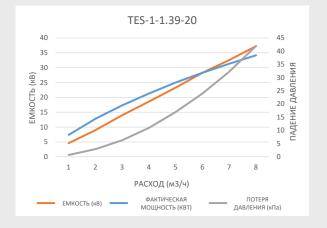
- Испарители следует устанавливать и использовать в горизонтальном положении, как указано в руководстве пользователя.
- При вводе испарителя в эксплуатацию необходимо полностью удалить весь воздух из системы и испарителя.
- Убедитесь, что испаритель работает при перепаде давления, указанном в его проектных условиях при вводе в эксплуатацию.
- Не останавливайте поток воды через испаритель, не удалив предварительно хладагент. В противном случае возможно замерзание змеевиков.
- Если испаритель не используется, рекомендуется полностью слить воду илизаполнить его антифризом, убедившись, что внутри не осталось воздуха.
- Необходимо регулярно контролировать химические свойства и соотношение антифриза (если применимо) внутри испарителя.
- Убедитесь, что расход воды не превышает рекомендуемый максимальный расход для испарителя.
- Чтобы предотвратить попадание частиц и загрязнений в водяной контур испарителя, установите фильтр и периодически проверяйте фильтры.
- Если потеря давления из-за загрязнения увеличивается, что приводит к снижениюпроизводительности, воду внутри испарителя можно периодически менять направление для его очистки.

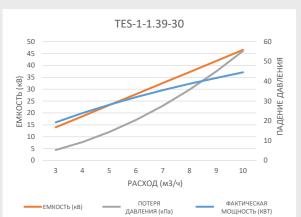
Таблица мощности, объема и расхода воды

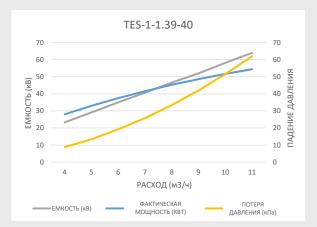
Значения, указанные в таблице ниже, рассчитаны на основе конкретных условий работы.

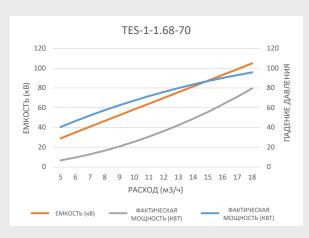
Условия:

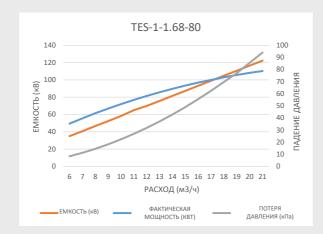
Хладагент: R407C

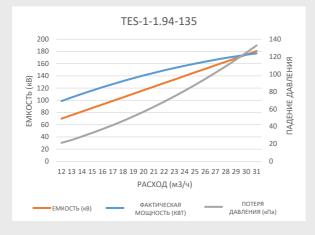

Температура воды на входе: 12°C Температура воды на выходе: 7°C Температура конденсации: 45°C Температура испарения: 2.75°C

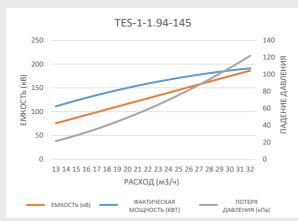

Перегрев: 5 К

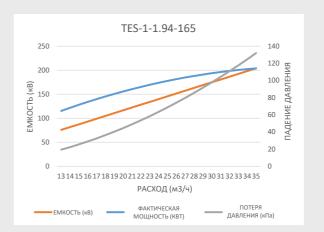

Коэффициент загрязнения: 0.043 m²K/W

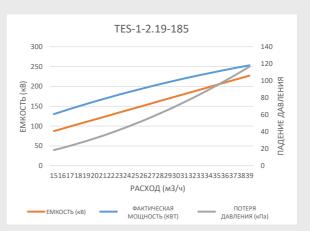

Коэффициент загрязнения: 0.043 m²K/W							
Model	Номина льная мощност ь (кВт)	Номинальная потеря давления (кПа)	Номина льный расход (м³/ч)	Макс.рас ход (м³/ч)	Газ Объем (л)	Вода Объем (л)	
TES-1-1.39-20	22	11	4	6	2,5	8	
TES-1-1.39-30	28	20,5	6	7	3	9,5	
TES-1-1.39-40	40	25,8	7	11	3,6	11,6	
TES-1-1.39-50	53	44	9	13	4,1	13,2	
TES-1-1.39-60	64	35	11	15	5,5	18,7	
TES-1-1.68-70	70	36	12	18	6,3	20,9	
TES-1-1.68-80	82	42	14	21	7,1	23,8	
TES-1-1.68-100	100	64	18	25	7,9	26,1	
TES-1-1.94-135	135	74	23	31	11	35,8	
TES-1-1.94-145	145	75	25	35	12,8	41,2	
TES-1-1.94-165	164	85	28	39	14,1	15,2	
TES-1-2.19-185	187	78	32	45	15,8	34,2	
TES-1-2.19-205	206	75	35	49	19,3	59,2	
TES-1-2.19-245	245	95	42	59	21,8	66,7	
TES-1-2.73-290	292	47	50	70	26	116,6	
TES-1-2.73-340	343	66	59	83	28,5	113,5	
TES-1-2.73-390	370	98	68	95	33,7	107,4	
TES-1-3.23-450	455	55	78	108	40,7	165,4	
TES-1-3.23-500	502	70	86	123	45	160,2	
TES-1-3.23-590	595	106	102	139	49,9	153,4	
TES-1-4.06-660	665	74	114	162	61	268,8	
TES-1-4.06-770	770	106	132	185	69,5	259	
TES-1-4.06-850	850	140	146	210	76,6	250,7	
TES-1-4.06-920	921	165	158	224	82,7	243,4	
TES-1-4.06-920	1055	170	181	253	98	286,2	
TES-1-4.06-1050	1155	100	198	280	118,8	373	
TES-1-4.57-1250	1251	118	214	298	124,1	366,8	
TES-1-5.08-1350	1363	108	234	330	134,5	471,8	
TES-1-5.08-1500	1514	145	260	371	151,2	452,5	


Диаграммы мощности Диаграммы мощности





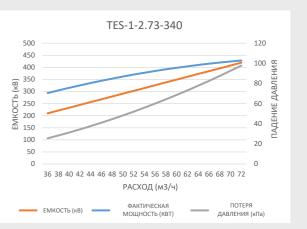


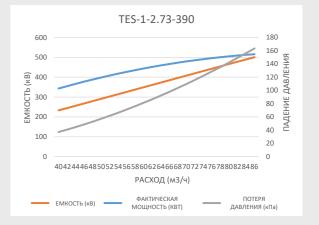


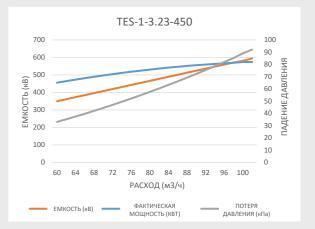


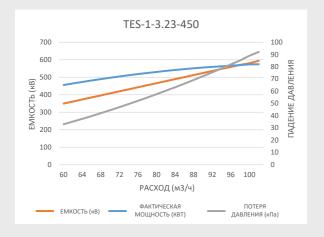


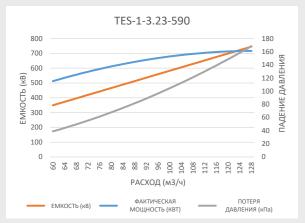


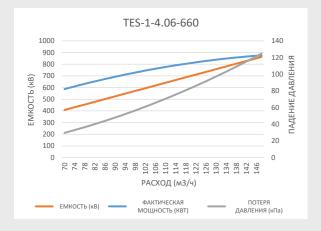


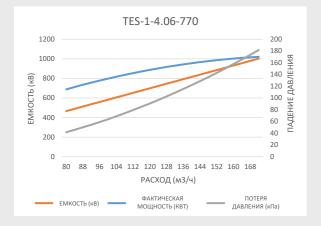


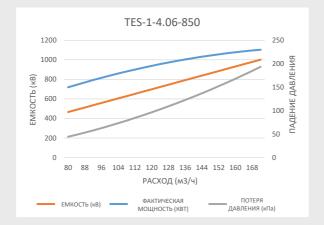


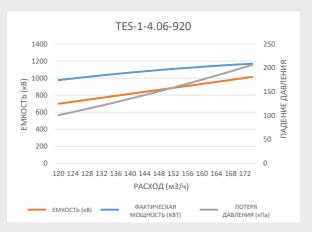


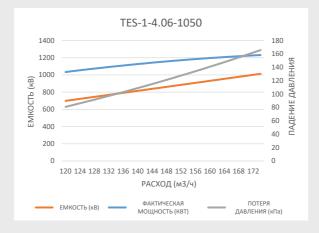


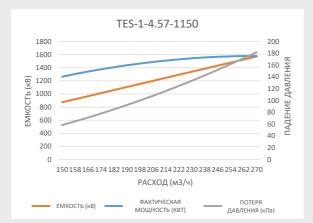


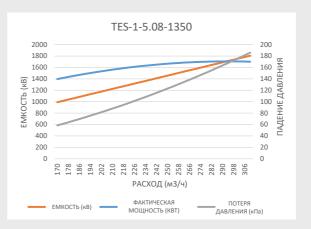


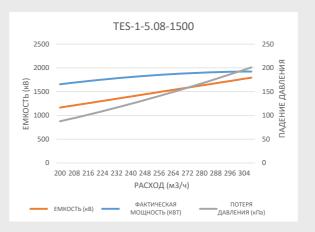

Диаграммы мощности Диаграммы мощности











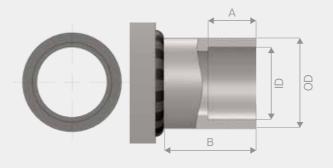
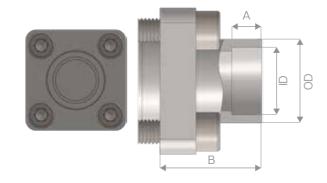


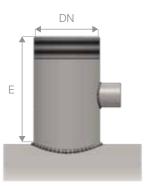
Таблица размеров соединений

Соединение сварного типа (W)

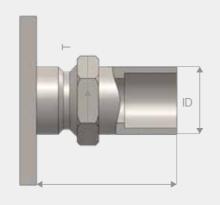
Размеры (мм)					
CODE	А	В	ID	OD	
W16	15	30	16,2	21,3	
W19	15	30	19,4	25	
W22	15	30	22,6	26,9	
W28	15	30	28,8	33,7	
W35	15	30	35,4	42,4	
W42	15	35	42,3	48,3	
W54	20	45	54,3	60,3	
W67	20	50	67	76	
W80	20	50	80,5	88,9	
W105	20	50	106	114	


Фланцевое соединение (DN)

	Размеры (мм)				
CODE	DN(mm)	E(mm)			
DN 100	114	120			
DN 125	140	120			
DN 150	168	120			
DN 200	220	120			

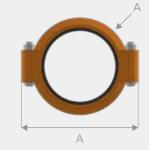

Соединение фланцевого типа (FL)

Размеры (мм)					
CODE	А	В	ID OD		
FL16	15	40	16,1	20,5	
FL19	15	40	19,4	24	
FL22	15	40	22,6	28	
FL28	15	40	29	35	
FL35	15	40	35,4	41,4	
FL42	15	40	42	48	
FL54	15	50	54,8	61	
FL67	25	55	67	74	
FL80	25	55	80,5 85		
FL105	25	55	106 115		


Резьбовое трубное соединение (G)

Размеры (мм)				
CODE	G(mm)	E(mm)		
G 1"	33,7	120		
G 1 ½"	48,3	120		
G 2"	60,4	120		
G 2 ½"	73,1	120		
G 3"	88,9	120		


Соединение типа Rotalock (RLA)


Размеры (мм)			
CODE	ID	Т	
RLA 16	16,2	1"14-UNS	
RLA 19	19,4	1"14-UNS	
RLB 22	22,6	1 1/4"12-UNF	
RLB 28	28,8	1 1/4"12-UNF	
RLC 35	28,8	1 ¾"12-UN	
RLC 35	35,4	1 ¾"12-UN	
RLC 35	42,3	1 ¾"12-UN	

Гибкое соединительное соединение (FLC)

Размеры (мм)						
CODE	Α	В	С	D	Е	
J3 FLC089	165	115	50	88,9	80	
J4 FLC114	200	145	50	114,3	100	
J5 FLC140	245	175	50	139,7	100	
J6 FLC168	275	205	55	168,3	150	
J8 FLC220	345	265	60	219,1	150	

Tanpera Türkiye

- +90 850 308 01 14
- Seyhli Mh. Ankara Cd. No: 380/C, 34906, Pendik, İstanbul, Türkiye
- www.tanpera.com.tr

Tanpera GmbH

- **L** +49 1590 4138428
- Phermann-Essig-Str. 36 71701 Schwieberdingen, Stuttgart, Germany
- www.tanpera.de

